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Abstract:  In modern power systems, ensuring uninterrupted electricity supply demands accurate load forecasting and 

effective contingency analysis. This research delves into the development and validation of advanced load prediction 

techniques, focusing on the IEEE 39 bus system as a representative testbed. The study reviews existing short-term load 

prediction models, emphasizing the significance of accurate forecasts in decision-making for power utilities. Through the 

integration of fuzzy logic with neural networks, a novel load distribution approach is proposed and evaluated for its 

accuracy and reliability. Additionally, the paper explores contingency analysis using load flow solutions, highlighting the 

importance of identifying critical contingencies for system security. The results demonstrate the effectiveness of the 
proposed methodologies in handling irregularities and uncertainties, thus enhancing the resilience and efficiency of 

modern power systems. 
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I. INTRODUCTION 

Modern power system demands an uninterrupted supply of electricity to the load side. This requires a proper idea of 

predicting present and future load demand with the least amount of error. For achieving this goal, scientists and scholars 

have been trying to develop the most efficient and optimal state-of-the-art method for predicting the future demand for 

electricity consumption by a method known as load forecasting. Load forecasting is used to control several operations and 

decisions such as dispatch, unit commitment, fuel allocation, and off-line network analysis. This gives the power utility 

company an idea about the future demand of the consumers and an ample amount of time to mitigate the difference between 

the generation capacity and load demand. Demand prediction minimizes the power generation cost and helps to establish 

an organized power system utility, especially because of the large expense pertaining to power generation [1]. Load 

forecasting helps an electric utility to make important decisions including decisions on purchasing and generating electric 

power, load switching, and infrastructure development. The subject of load forecasting has been in existence for decades 
to forecast the future demand. This involves the accurate prediction of both the magnitudes and geographical locations of 

electric load over the different periods of the planning horizon [2]. 

 

A. The Load Forecast Levels 

Decision-making in management involves distinct levels for predicting energy consumption, each employing various 
methodologies. The process of load forecasting is influenced by the size and consumption patterns of a region, leading to 

two primary categorizations: micro and macro forecasting. Micro-level forecasting focuses on estimating the energy use 

of smaller sections within a larger area, aggregating these to determine the total consumption for the entire region. This 

approach is typically applied to low voltage demands due to the extensive computations involved. Conversely, macro-level 

forecasting estimates the energy needs of larger areas, such as cities, provinces, or entire countries, without delving into 

finer, smaller-scale consumption details. These forecasting levels are further classified into different time frames, each with 

its own set of approaches [3]. 

 Short-Term Load Forecast 

 The Mid-Term Load Forecast 

 The Long-Term Forecast 

B. Contingency Analysis Using Load Flow Solution  

Load flow analysis serves as a static security assessment method for a given power system, ensuring its defensive operation. 

However, in the event of a contingency, the system can transition into an emergency state, prompting rapid actions by 

operators to restore normalcy. During this phase, all elements identified as contingency cases in the contingency analysis 

section are assessed, and outage studies are conducted. The program's output provides alerts to the user regarding potential 

overloads or voltage deviations beyond permissible limits. 

Contingency analysis involves predicting the impact of individual contingency cases, which can become arduous and time-
consuming, especially when dealing with large power system networks. To address this challenge, the contingency 
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screening or selection process comes into play. In practice, it is observed that not all potential outages lead to overloads or 

voltage issues in other power system components. Identifying the specific contingencies that result in operational limit 
violations is known as contingency selection. This selection process relies on calculating severity indices known as 

Performance Indices (PI) to pinpoint the critical contingencies [4]. Transmission line congestion can arise from either 

overloading or underloading within the overall transmission network. Such imbalances can lead to failures of power system 

components. To address these challenges and ensure effective power system operation and security, contingency analysis 

is employed. This security measure involves determining and assessing the operational limits of the system both before 

and after potential contingencies at an operation control center. The aim is to minimize the likelihood of power system 

failures caused by component loss or failure [5]. 

Conducting contingency analysis involves performing Alternating Current (AC) load flow calculations to assess the impact 

of possible failures across generators and transmission lines. The extensive array of possible scenarios renders this 

evaluation process both time-consuming and cumbersome. To address these difficulties, the implementation of automated 

contingency screening techniques is being embraced. These techniques are designed to detect and sequence outages that 

result in breaches of power flow or voltage thresholds on the network. Contingencies are assessed and ordered according 
to their severity or performance metrics, where higher scores signify more critical issues [6]. The transmission network of 

Ethiopian electric power is notably intricate, attributed to its unified grid interconnection architecture. As a result, a single 

transmission line failure can precipitate widespread disturbances throughout the grid. This effect is particularly pronounced 

in the North-West region of Ethiopia, which is frequently challenged by security issues. 

II. LITERATURE REVIEW 

Li, C., et al. (2022) [7] emphasize the significance of precise short-term electrical demand forecasting for ensuring power 

grid safety and stability. They propose a novel approach, the Sparrow Algorithm-based SSA-GRU model, to address 

challenges posed by nonlinear load patterns. This model improves load forecasting accuracy by integrating complementary 

sets with Empirical Mode Decomposition and employing an integrated SSA-GRU model. Experimental validation using 
real-world data confirms the superiority of the proposed model over other forecasting methods, underscoring its 

effectiveness in enhancing short-term load forecasting. 

 

Pollen Barua et al. (2022) [8] discuss the increasing global demand for renewable energy integration into power systems, 

focusing on Bangladesh's transition toward sustainability. They propose the installation of wind and solar generators in the 

Western grid of Bangladesh and employ machine learning techniques to predict contingency analysis outcomes. 

Additionally, they propose integrating a Static Synchronous Compensator (STATCOM) to mitigate voltage fluctuations, 

enhancing the power system's stability and security. 

 

Van Hoa Nguyen et al. (2022) [9] introduce a self-updating and self-evaluating building load forecasting system to address 

challenges in accurately forecasting building loads. This dynamic system integrates the Prophet model with building 
SCADA systems, ensuring continuous learning and periodic retraining to adapt to changing building conditions. Evaluation 

results demonstrate improved load consumption forecasting accuracy over time, offering a solution for efficient building 

energy management in dynamic environments. 

 

S. B. Daram et al. (2022) [10] discuss the prediction of single transmission line failures using Big Data Analytics. They 

employ the LVSI and machine learning methods to predict the severity of line failures based on simulation data, providing 

valuable insights for power system maintenance and reliability. 

 

ML Woldesemayat et al. (2022) [11] address the challenge of bus voltage infractions in the Ethiopian Electric Power 

network due to increasing contingency events. They propose a methodology for conducting static security assessment and 

optimizing the deployment of interline power flow controllers (IPFCs) using the Grey Wolf Optimization algorithm. 

Integration of IPFCs significantly improves system performance and stability under severe contingency scenarios. 
 

Patel, Ravindu & Nimje et al. (2022) [12] highlight the importance of contingency analysis in anticipating potential 

equipment failures in electrical networks. They discuss the effectiveness of contingency ranking selection in conducting 

safety assessments, demonstrating a reduction in violations and restoration of parameters within safe operational ranges. 

 

Kumar, P., et al. (2022) [13] focus on contingency analysis in power systems during transmission line outages. They 

propose integrating load buses with solar power plants to enhance system resilience and minimize vulnerability using 

particle swarm optimization. The study employs Newton-Raphson load flow method and MATPOWER tool for 

comprehensive contingency analysis. 

 

N. Ahmad et al. (2022) [14] review load forecasting technologies in electric utility companies, emphasizing the importance 
of accurate predictions for ensuring reliable power supply. They evaluate various machine learning, deep learning, and 

artificial intelligence algorithms, comparing single and hybrid forecasting models to identify optimal solutions for accurate 

load predictions. 
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H. Yuan et al. (2022) [15] propose a robust optimization framework for addressing transient stability challenges in power 
systems integrating wind power generators. Their two-stage robust optimization model effectively synchronizes generation 

dispatch and emergency load shedding, demonstrating significant improvements in system stability under variable wind 

power conditions. 

 

Han, H., et al. (2021) [16] propose a two-stage dispatch model for optimizing power system operations considering 

renewable energy integration. The model incorporates system security indices and active demand response behavior, 

offering a comprehensive approach for balancing system security and economic efficiency. 

 

Groß, A., et al. (2021) [17] evaluate eight approaches for day-ahead load forecasts in individual buildings, highlighting 

advancements in load forecasting methods. They demonstrate significant reductions in forecast errors using machine 

learning and statistical techniques, emphasizing the importance of tailored forecasting approaches based on specific 

requirements. 
 

III. OBJECTIVES 

The work is aimed at achieving the following key objectives from the work: 

• To develop a comprehensive understanding of the IEEE 39 bus system, including its topology, load characteristics, 

and voltage contingency scenarios. 

• To review and analyze existing short-term load prediction models and techniques in power systems.by collecting and 

preprocess historical load data for the IEEE 39 bus system, ensuring data quality and consistency. 

• To validate the proposed load prediction and assess its accuracy and reliability in predicting load for various loading 

condition and comparing it with fourier series model 

.  

IV. METHODOLOGY 

Ensuring the continuous fulfillment of power system demands and supporting sustained economic advancement 

necessitates accurate load forecasting as a critical function for electric power utilities. The precision of load forecasts is 

increasingly vital for utility management, the formulation of power supply strategies, financial planning, and the 
management of electricity market prices. Generally, load forecasting can be segmented into three distinct durations: short, 

medium, and long term. Short-term load forecasting, ranging from half an hour to one week, is crucial for the secure and 

efficient operation of power systems. Medium-term forecasting, spanning from a week to several months, facilitates the 

planning of fuel supply and maintenance activities. Meanwhile, long-term forecasts, extending beyond a year, play a key 

role in strategic planning and operational expansion efforts. The work has described using fuzzy logic with neural network 

interference for load distribution in the IEEE 39 bus system.   

The reliable and efficient operation of modern power systems relies heavily on accurate load forecasting and contingency 

assessment. Load forecasting aids in the optimal scheduling of generation and resources, while contingency assessment 

ensures the system's resilience in the face of unexpected events. In this context, the IEEE 39 bus system serves as a valuable 

testbed for research and development due to its complexity and resemblance to real-world power systems. 

A. IEEE 39 bus system description 

Researchers frequently utilize IEEE bus systems as experimental platforms to test and implement novel concepts and 

innovations. This Technical Note provides an in-depth overview of the IEEE 39-bus system, delineating its intricate 

components which encompass loads, capacitor banks, transmission lines, and generators. It serves as a representative model 

of a medium-sized power system, making it an ideal platform for the development and testing of new algorithms, control 

strategies, and optimization techniques. It is used to validate their ideas before applying them to larger and more complex 

real-world power grids.  

B. Adaptive_neuro_interval_fuzzy (ANIF) algorithm 

The use of Artificial Intelligence (AI) in forecasting is of paramount importance due to the manifold advantages it brings 

to various domains. One of the primary benefits is the marked improvement in accuracy. AI, employing machine learning 

algorithms and neural networks, excels in analyzing extensive historical data, discerning intricate patterns, and yielding 

forecasts of exceptional precision. Furthermore, AI models adeptly handle complexity, accommodating complex 

relationships and non-linear patterns in data, making them suitable for forecasting tasks that involve multiple variables or 

intricate interactions. 
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Figure 4.1: fuzzy system working flow chart 

 

Figure 4.2: Architectural Diagram of a Multi-Layer Perceptron (MLP) Network Featuring Two Hidden Layers. 
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Figure 4.3: Flow chart for Adaptive_neuro_interval_fuzzy (ANIF) algorithm for prediction 

A general outline of how you can implement load forecasting using these techniques: 

 Data Collection and Preprocessing: Gather historical load data for the IEEE 39 bus system, including factors that can 

influence load (e.g., weather data, day of the week, time of day, holidays). Clean and preprocess the data, handling 

missing values, outliers, and scaling the features appropriately. 

 Data Splitting: Splitting the dataset into training, validation, and test sets. The training set is used to train the neural 

network, the validation set helps with hyper parameter tuning, and the test set is used for final evaluation. 

 Neural Network Model: Designing and building a neural network model for load forecasting. Configuring the input 

layer to accept the engineered features and the output layer to predict the load. Experimenting with different 

architectures, activation functions, and layers to optimize performance. 

 Fuzzy Logic: Utilize fuzzy logic to capture and incorporate expert knowledge or rules into your load forecasting model. 

Fuzzy logic can help model the uncertainty and imprecision in the system. Define linguistic variables and membership 
functions that describe input and output variables. Create fuzzy rules that capture the relationships between inputs and 

outputs. These rules can be derived from domain knowledge or data-driven learning. 

 Training and Validation: Training of the neural network using the training dataset and validate its performance on the 

validation dataset. Fine-tune hyper parameters, such as learning rate, batch size, and the number of hidden layers and 

neurons, to optimize the model's performance. 

 Testing and Evaluation: Evaluating the neural network and fuzzy logic model on the test dataset using appropriate 

metrics, such as Mean Absolute Error (MAE) or Root Mean Squared Error (RMSE). Compare the model's performance 

against benchmarks or other forecasting methods. 

In the recall phase, novel input data is applied to the neural network, and its outputs are computed and evaluated for testing 

purposes. The Short-Term Load Forecasting (STLF) model, which relies on Artificial Neural Networks (ANNs), employs 

a layered ANN architecture consisting of an Input layer, Hidden layer, and Output layer. The computation of neural network 

weights is accomplished through a learning process that incorporates error propagation within a parallel distributed 

processing framework. 

IEEE 39 bus system 
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Load data 
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Neural networks and fuzzy systems have gained substantial traction in various engineering and scientific domains. Their 

applications span a wide range, from consumer products to decision analysis. Neural networks are fundamentally parallel 
distributed processors known for their inductive learning capability from numerical data. They optimize their performance 

by adjusting synaptic weights. Feed-forward neural networks, particularly multilayer perceptrons (MLP's), have proven 

their ability to accurately approximate any continuous real function within a compact set. Consequently, feed-forward 

neural networks are valuable for system modeling and identification. However, they exhibit three primary limitations. First, 

there is a lack of a systematic approach for defining the neural network's architecture. Second, training neural networks is 

often time-intensive. Lastly, once trained, neural networks lack the ability to provide explicit explanations for their 

responses, resulting in non-transparent inference processes. Hence, when attempting to represent a complex system using 

a trained neural network, the information contained within the network's parameter values lacks human interpretability, 

which is crucial for informed decision-making. Consequently, there is a significant need to develop methods for obtaining 

a relevant and interpretable system description from observed data or experiential knowledge. 

V. RESULTS AND DISCUSSION 

A. Implementation Details 

In this chapter, we present a comprehensive exposition of the algorithm we have developed for conducting sentiment 

analysis specifically tailored to evaluate the performance buffer. The performance buffer is simulated as a crucial 

component within our algorithm, serving the purpose of optimizing its overall effectiveness and efficiency. We provide 

both analytical and numerical insights into the inner workings of this algorithm, offering a detailed examination of its 

functionality and performance characteristics in the context of sentiment analysis. To evaluate the performance of the 

proposed algorithm scheme, the proposed algorithm is simulated in the following configuration: 

Pentium Core I5-2430M CPU @ 2.40 GHz 

4GB RAM 

64-bit Operating System 
Matlab Platform 

B. Simulation Environment 

MATLAB, an acronym for MATrix LABoratory, is a specialized software package designed for efficient and rapid 

computation of logical operations and input/output tasks. It encompasses an extensive library of pre-built functions tailored 

to a diverse range of calculations, complemented by a multitude of toolkits catering to specific analytical domains such as 

statistics, optimization, partial differential equation solving, and data analysis. In the context of this research, we leverage 

the capabilities of the MATLAB platform to facilitate the implementation and performance simulation of our algorithm. 

We harness measurement toolkits and a selection of built-in functions to generate graphical representations of data. 

Furthermore, MATLAB functions are instrumental in deriving the simulation results for the performance assessment of 

the bus system under the influence of specific algorithms. 

 

Figure 5.1: IEEE 39 single line bus diagram 
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Table 5. 1  Calculation of Line data for IEEE 39 Bus system 

From 

Bus 

To 

Bus 

Line impedance (p.u.) Half line 

charging 
susceptance 

(p.u.) 

MVA 

of line 

Voltage 

in KV 
Resistance Reactance 

1 2 0.0035 0.0411 0.6987 100 345 

1 39 0.001 0.025 0.75 100 345 

2 3 0.0013 0.0151 0.2572 100 345 

2 25 0.007 0.0086 0.146 100 345 

2 30 0 0.0181 0 100 22 

3 4 0.0013 0.0213 0.2214 100 345 

3 18 0.0011 0.0133 0.2138 100 345 

4 5 0.0008 0.0128 0.1342 100 345 

4 14 0.0008 0.0129 0.1382 100 345 

5 8 0.0008 0.0112 0.1476 100 345 

6 5 0.0002 0.0026 0.0434 100 345 

6 7 0.0006 0.0092 0.113 100 345 

6 11 0.0007 0.0082 0.1389 100 345 

7 8 0.0004 0.0046 0.078 100 345 

8 9 0.0023 0.0363 0.3804 100 345 

9 39 0.001 0.025 1.2 100 345 

10 11 0.0004 0.0043 0.0729 100 345 

10 13 0.0004 0.0043 0.0729 100 345 

10 32 0 0.02 0 100 22 

12 11 0.0016 0.0435 0 100 345 

12 13 0.0016 0.0435 0 100 345 

13 14 0.0009 0.0101 0.1723 100 345 

14 15 0.0018 0.0217 0.366 100 345 

15 16 0.0009 0.0094 0.171 100 345 

16 17 0.0007 0.0089 0.1342 100 345 

16 19 0.0016 0.0195 0.304 100 345 

16 21 0.0008 0.0135 0.2548 100 345 

16 24 0.0003 0.0059 0.068 100 345 

17 18 0.0007 0.0082 0.1319 100 345 

17 27 0.0013 0.0173 0.3216 100 345 

19 33 0.0007 0.0142 0 100 22 

19 20 0.0007 0.0138 0 100 345 

20 34 0.0009 0.018 0 100 22 

21 22 0.0008 0.014 0.2565 100 345 

22 23 0.0006 0.0096 0.1846 100 345 

22 35 0 0.0143 0 100 22 

23 24 0.0022 0.035 0.361 100 345 

23 36 0.0005 0.0272 0 100 22 

25 26 0.0032 0.0323 0.513 100 345 

25 37 0.0006 0.0232 0 100 22 

26 27 0.0014 0.0147 0.2396 100 345 

26 28 0.0043 0.0474 0.7802 100 345 
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26 29 0.0057 0.0625 1.029 100 345 

28 29 0.0014 0.0151 0.249 100 345 

29 38 0.0008 0.0156 0 100 22 

31 6 0 0.025 0 100 22 

The system comprises a total of 46 transmission lines and 39 buses. The performance indices are summarized in Table 5.2. 

Analysis of Table 5.2 reveals that the vulnerability of bus 16 is the most significant, with its fault having a major impact 

on the entire system. The elevated PI score associated with this fault highlights its critical importance in system operation, 

indicating that it receives substantial attention during operational procedures. 

Table 5.2 Bus Voltages in the Pre and Post Contingency State 

Bus 

Number 

Pre-contingency voltage 

(pu) 

Post-contingency 

voltage (pu) 

Performance 

index (PI) 

1 1.0086 0.9823 0.0263 

2 0.9971 0.828 0.1691 

3 0.9855 0.9851 0.0004 

4 0.9826 0.9826 0 

5 1.1363 1.1363 0 

6 0.9797 0.9796 0.0001 

7 0.9884 0.9814 0.007 

8 0.9913 0.9788 0.0125 

9 1.0086 1.0086 0 

10 0.9942 0.8253 0.1689 

11 0.9826 0.8126 0.17 

12 0.9768 0.807 0.1698 

13 1.0115 0.8414 0.1701 

14 1.0173 0.8462 0.1711 

15 0.9913 0.8188 0.1725 

16 0.9855 0.8123 0.1732 

17 0.9913 0.8912 0.1001 

18 0.9768 0.8956 0.0812 

19 1.2272 1.1227 0.1045 

20 0.9913 0.9901 0.0012 

21 0.9971 0.995 0.0021 

22 0.9826 0.9825 0.0001 

23 1.0086 1.0063 0.0023 

24 0.9797 0.9796 0.0001 

25 0.9971 0.9962 0.0009 

26 0.9913 0.9910 0.0003 

27 0.9942 0.9939 0.0003 

28 1.0144 1.0142 0.0002 

29 1.0115 1.0113 0.0002 

30 0.9768 0.9765 0.0003 

31 1.1818 1.1816 0.0002 

32 0.9884 0.987 0.0014 

33 0.9545 0.9543 0.0002 

34 0.9768 0.9724 0.0044 

35 1.0115 1.010 0.0015 
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36 0.8636 0.8532 0.0104 

37 0.9913 0.9902 0.0011 

38 0.8181 0.8056 0.0125 

39 0.9855 0.9855 0 

 

C. Fore casting load in IEEE 39 bus system  

Forecasting the load in a power system, such as the IEEE 39 bus system, using Fourier series is a mathematical technique 

that can help you approximate and predict load patterns. Fourier series decomposition can represent a periodic load curve 

as a sum of sinusoidal components with different frequencies and amplitudes. Forecasting load in the IEEE 39 bus system 

using neural networks and fuzzy logic is a more advanced and data-driven approach compared to Fourier series 

decomposition. The analysis results are being described with outcomes evaluated as RMSE error in the predicted and actual 

load values. 

 

Figure 5.2: Fuzzy rule definition tool box in MATLAB for different loading points 

 
Figure 5.3: Madami functions of fuzzy system 
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Figure 5.4: Adaptive_neuro_interval_fuzzy (ANIF) algorithm evaluation in MATLAB for load prediction 

 

Figure 5.5: Multi input system in fuzzy algorithm 

 

Figure 5.6: Actual load vs predicted load using proposed algorithm 
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The figure 5.6 provides a visual representation of how well a load forecasting model based on the 

Adaptive_neuro_interval_fuzzy (ANIF) algorithm performs in predicting actual load values. In an ideal scenario, the 
predicted load values should closely follow the actual load values. The red  line in the graph represents the actual load 

whereas the blue line represents the forecasted loading condition of IEEE 39 bus system 

 

Figure 5.7: Actual load vs predicted load using fourier series method 

The figure 5.7 provides a visual representation of how well a load forecasting model based on the Fourier series 

mathematical model performs in predicting actual load values. In an ideal scenario, the predicted load values should closely 

follow the actual load values. The red line in the graph represents the forecasted load whereas the blue line represents the 

actual loading condition of IEEE 39 bus system 

Table 5.4: Comparative analysis of error in prediction in IEEE 39 Bus system using two algorithms 

Algorithm of Prediction adopted MSE % 

Fourier Series 6.437 

Adaptive_neuro_interval_fuzzy 

(ANIF) algorithm 

4.086 

The "Fourier Series" algorithm was used to make load predictions. The MSE percentage associated with this algorithm is 

6.437%. This means that, on average, the squared difference between the predicted load values and the actual load values 

was 6.437% of the total variance in the data. Adaptive_neuro_interval_fuzzy (ANIF) algorithm" was used as an alternative 

prediction method. The MSE percentage associated with this algorithm is 4.086%. Compared to the Fourier series model, 

the ANIF algorithm achieved a lower MSE percentage, indicating that it provided more accurate load predictions 
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Figure 5.8: Comparative analysis of Prediction performance of two algorithms 

It has been found that the proposed model with adaptive_neuro_interval_fuzzy load forecasting model is better at Handling 
Irregularities. In scenarios where the load data is highly irregular or where there are a lot of uncertainties (such as in rapidly 

changing urban environments or with the increasing use of renewable energy sources), adaptive_neuro_interval_fuzzy 

logic performs better. The controller can adapt to changing scenarios without requiring a complete restructuring of the 

forecasting model. It allows the incorporation of expert knowledge through user-defined rules, making it more versatile in 

handling various scenarios. 

 

VI. CONCLUSION 

The research presented in this paper underscores the critical role of accurate load forecasting and contingency analysis in 

modern power systems. By leveraging advanced techniques such as fuzzy logic and neural networks, significant 

improvements in load prediction accuracy and system resilience are achieved. The integration of these methodologies into 

the IEEE 39 bus system provides valuable insights into their practical applicability and effectiveness. The results highlight 
the importance of adaptive approaches in handling irregularities and uncertainties, ensuring robust performance even in 

dynamically changing environments. Moving forward, the findings of this study pave the way for further advancements in 

load forecasting and contingency analysis, contributing to the optimization and sustainability of power system operations.. 
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