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Abstract: In modern power systems, ensuring uninterrupted electricity supply demands accurate load forecasting and
effective contingency analysis. This research delves into the development and validation of advanced load prediction
techniques, focusing on the IEEE 39 bus system as a representative testbed. The study reviews existing short-term load
prediction models, emphasizing the significance of accurate forecasts in decision-making for power utilities. Through the
integration of fuzzy logic with neural networks, a novel load distribution approach is proposed and evaluated for its
accuracy and reliability. Additionally, the paper explores contingency analysis using load flow solutions, highlighting the
importance of identifying critical contingencies for system security. The results demonstrate the effectiveness of the
proposed methodologies in handling irregularities and uncertainties, thus enhancing the resilience and efficiency of
modern power systems.
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I. INTRODUCTION

Modern power system demands an uninterrupted supply of electricity to the load side. This requires a proper idea of
predicting present and future load demand with the least amount of error. For achieving this goal, scientists and scholars
have been trying to develop the most efficient and optimal state-of-the-art method for predicting the future demand for
electricity consumption by a method known as load forecasting. Load forecasting is used to control several operations and
decisions such as dispatch, unit commitment, fuel allocation, and off-line network analysis. This gives the power utility
company an idea about the future demand of the consumers and an ample amount of time to mitigate the difference between
the generation capacity and load demand. Demand prediction minimizes the power generation cost and helps to establish
an organized power system utility, especially because of the large expense pertaining to power generation [1]. Load
forecasting helps an electric utility to make important decisions including decisions on purchasing and generating electric
power, load switching, and infrastructure development. The subject of load forecasting has been in existence for decades
to forecast the future demand. This involves the accurate prediction of both the magnitudes and geographical locations of
electric load over the different periods of the planning horizon [2].

A. The Load Forecast Levels

Decision-making in management involves distinct levels for predicting energy consumption, each employing various
methodologies. The process of load forecasting is influenced by the size and consumption patterns of a region, leading to
two primary categorizations: micro and macro forecasting. Micro-level forecasting focuses on estimating the energy use
of smaller sections within a larger area, aggregating these to determine the total consumption for the entire region. This
approach is typically applied to low voltage demands due to the extensive computations involved. Conversely, macro-level
forecasting estimates the energy needs of larger areas, such as cities, provinces, or entire countries, without delving into
finer, smaller-scale consumption details. These forecasting levels are further classified into different time frames, each with
its own set of approaches [3].

e Short-Term Load Forecast

e The Mid-Term Load Forecast
e The Long-Term Forecast

B. Contingency Analysis Using Load Flow Solution

Load flow analysis serves as a static security assessment method for a given power system, ensuring its defensive operation.
However, in the event of a contingency, the system can transition into an emergency state, prompting rapid actions by
operators to restore normalcy. During this phase, all elements identified as contingency cases in the contingency analysis
section are assessed, and outage studies are conducted. The program's output provides alerts to the user regarding potential
overloads or voltage deviations beyond permissible limits.

Contingency analysis involves predicting the impact of individual contingency cases, which can become arduous and time-
consuming, especially when dealing with large power system networks. To address this challenge, the contingency
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screening or selection process comes into play. In practice, it is observed that not all potential outages lead to overloads or
voltage issues in other power system components. Identifying the specific contingencies that result in operational limit
violations is known as contingency selection. This selection process relies on calculating severity indices known as
Performance Indices (PI) to pinpoint the critical contingencies [4]. Transmission line congestion can arise from either
overloading or underloading within the overall transmission network. Such imbalances can lead to failures of power system
components. To address these challenges and ensure effective power system operation and security, contingency analysis
is employed. This security measure involves determining and assessing the operational limits of the system both before
and after potential contingencies at an operation control center. The aim is to minimize the likelihood of power system
failures caused by component loss or failure [5].

Conducting contingency analysis involves performing Alternating Current (AC) load flow calculations to assess the impact
of possible failures across generators and transmission lines. The extensive array of possible scenarios renders this
evaluation process both time-consuming and cumbersome. To address these difficulties, the implementation of automated
contingency screening techniques is being embraced. These techniques are designed to detect and sequence outages that
result in breaches of power flow or voltage thresholds on the network. Contingencies are assessed and ordered according
to their severity or performance metrics, where higher scores signify more critical issues [6]. The transmission network of
Ethiopian electric power isnotably intricate, attributed to its unified grid interconnection architecture. As a result, a single
transmission line failure can precipitate widespread disturbances throughout the grid. This effect is particularly pronounced
in the North-West region of Ethiopia, which is frequently challenged by security issues.

Il. LITERATURE REVIEW

Li, C., et al. (2022) [7] emphasize the significance of precise short-term electrical demand forecasting for ensuring power
grid safety and stability. They propose a novel approach, the Sparrow Algorithm-based SSA-GRU model, to address
challenges posed by nonlinear load patterns. This model improves load forecasting accuracy by integrating complementary
sets with Empirical Mode Decomposition and employing an integrated SSA-GRU model. Experimental validation using
real-world data confirms the superiority of the proposed model over other forecasting methods, underscoring its
effectiveness in enhancing short-term load forecasting.

Pollen Barua et al. (2022) [8] discuss the increasing global demand for renewable energy integration into power systems,
focusing on Bangladesh's transition toward sustainability. They propose the installation of wind and solar generators in the
Western grid of Bangladesh and employ machine learning techniques to predict contingency analysis outcomes.
Additionally, they propose integrating a Static Synchronous Compensator (STATCOM) to mitigate voltage fluctuations,
enhancing the power system's stability and security.

Van Hoa Nguyen et al. (2022) [9] introduce a self-updating and self-evaluating building load forecasting system to address
challenges in accurately forecasting building loads. This dynamic system integrates the Prophet model with building
SCADA systems, ensuring continuous learning and periodic retraining to adapt to changing building conditions. Evaluation
results demonstrate improved load consumption forecasting accuracy over time, offering a solution for efficient building
energy management in dynamic environments.

S. B. Daram et al. (2022) [10] discuss the prediction of single transmission line failures using Big Data Analytics. They
employ the LVSI and machine learning methods to predict the severity of line failures based on simulation data, providing
valuable insights for power system maintenance and reliability.

ML Woldesemayat et al. (2022) [11] address the challenge of bus voltage infractions in the Ethiopian Electric Power
network due to increasing contingency events. They propose a methodology for conducting static security assessment and
optimizing the deployment of interline power flow controllers (IPFCs) using the Grey Wolf Optimization algorithm.
Integration of IPFCs significantly improves system performance and stability under severe contingency scenarios.

Patel, Ravindu & Nimje et al. (2022) [12] highlight the importance of contingency analysis in anticipating potential
equipment failures in electrical networks. They discuss the effectiveness of contingency ranking selection in conducting
safety assessments, demonstrating a reduction in violations and restoration of parameters within safe operational ranges.

Kumar, P., et al. (2022) [13] focus on contingency analysis in power systems during transmission line outages. They
propose integrating load buses with solar power plants to enhance system resilience and minimize vulnerability using
particle swarm optimization. The study employs Newton-Raphson load flow method and MATPOWER tool for
comprehensive contingency analysis.

N. Ahmad et al. (2022) [14] review load forecasting technologies in electric utility companies, emphasizing the importance
of accurate predictions for ensuring reliable power supply. They evaluate various machine learning, deep learning, and
artificial intelligence algorithms, comparing single and hybrid forecasting models to identify optimal solutions for accurate
load predictions.
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H. Yuan et al. (2022) [15] propose a robust optimization framework for addressing transient stability challenges in power
systems integrating wind power generators. Their two-stage robust optimization model effectively synchronizes generation
dispatch and emergency load shedding, demonstrating significant improvements in system stability under variable wind
power conditions.

Han, H., et al. (2021) [16] propose a two-stage dispatch model for optimizing power system operations considering
renewable energy integration. The model incorporates system security indices and active demand response behavior,
offering a comprehensive approach for balancing system security and economic efficiency.

GroB3, A, et al. (2021) [17] evaluate eight approaches for day-ahead load forecasts in individual buildings, highlighting
advancements in load forecasting methods. They demonstrate significant reductions in forecast errors using machine
learning and statistical techniques, emphasizing the importance of tailored forecasting approaches based on specific
requirements.

I11. OBJECTIVES

The work is aimed at achieving the following key objectives from the work:

* To develop a comprehensive understanding of the IEEE 39 bus system, including its topology, load characteristics,
and voltage contingency scenarios.

» Toreview and analyze existing short-term load prediction models and techniques in power systems.by collecting and
preprocess historical load data for the IEEE 39 bus system, ensuring data quality and consistency.

» To validate the proposed load prediction and assess its accuracy and reliability in predicting load for various loading
condition and comparing it with fourier series model

IV. METHODOLOGY

Ensuring the continuous fulfillment of power system demands and supporting sustained economic advancement
necessitates accurate load forecasting as a critical function for electric power utilities. The precision of load forecasts is
increasingly vital for utility management, the formulation of power supply strategies, financial planning, and the
management of electricity market prices. Generally, load forecasting can be segmented into three distinct durations: short,
medium, and long term. Short-term load forecasting, ranging from half an hour to one week, is crucial for the secure and
efficient operation of power systems. Medium-term forecasting, spanning from a week to several months, facilitates the
planning of fuel supply and maintenance activities. Meanwhile, long-term forecasts, extending beyond a year, play a key
role in strategic planning and operational expansion efforts. The work has described using fuzzy logic with neural network
interference for load distribution in the IEEE 39 bus system.

The reliable and efficient operation of modern power systems relies heavily on accurate load forecasting and contingency
assessment. Load forecasting aids in the optimal scheduling of generation and resources, while contingency assessment
ensures the system's resilience in the face of unexpected events. In this context, the IEEE 39 bus system serves as a valuable
testbed for research and development due to its complexity and resemblance to real-world power systems.

A. 1EEE 39 bus system description

Researchers frequently utilize IEEE bus systems as experimental platforms to test and implement novel concepts and
innovations. This Technical Note provides an in-depth overview of the IEEE 39-bus system, delineating its intricate
components which encompass loads, capacitor banks, transmission lines, and generators. It serves as a representative model
of a medium-sized power system, making it an ideal platform for the development and testing of new algorithms, control
strategies, and optimization techniques. It is used to validate their ideas before applying them to larger and more complex
real-world power grids.

B. Adaptive_neuro_interval_fuzzy (ANIF) algorithm

The use of Artificial Intelligence (Al) in forecasting is of paramount importance due to the manifold advantages it brings
to various domains. One of the primary benefits is the marked improvement in accuracy. Al, employing machine learning
algorithms and neural networks, excels in analyzing extensive historical data, discerning intricate patterns, and yielding
forecasts of exceptional precision. Furthermore, Al models adeptly handle complexity, accommodating complex
relationships and non-linear patterns in data, making them suitable for forecasting tasks that involve multiple variables or
intricate interactions.
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Figure 4.2: Architectural Diagram of a Multi-Layer Perceptron (MLP) Network Featuring Two Hidden Layers.
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Figure 4.3: Flow chart for Adaptive_neuro_interval_fuzzy (ANIF) algorithm for prediction

A general outline of how you can implement load forecasting using these techniques:

Data Collection and Preprocessing: Gather historical load data for the IEEE 39 bus system, including factors that can
influence load (e.g., weather data, day of the week, time of day, holidays). Clean and preprocess the data, handling
missing values, outliers, and scaling the features appropriately.

Data Splitting: Splitting the dataset into training, validation, and test sets. The training set is used to train the neural
network, the validation set helps with hyper parameter tuning, and the test set is used for final evaluation.

Neural Network Model: Designing and building a neural network model for load forecasting. Configuring the input
layer to accept the engineered features and the output layer to predict the load. Experimenting with different
architectures, activation functions, and layers to optimize performance.

Fuzzy Logic: Utilize fuzzy logic to capture and incorporate expert knowledge or rules into your load forecasting model.
Fuzzy logic can help model the uncertainty and imprecision in the system. Define linguistic variables and membership
functions that describe input and output variables. Create fuzzy rules that capture the relationships between inputs and
outputs. These rules can be derived from domain knowledge or data-driven learning.

Training and Validation: Training of the neural network using the training dataset and validate its performance on the
validation dataset. Fine-tune hyper parameters, such as learning rate, batch size, and the number of hidden layers and
neurons, to optimize the model's performance.

Testing and Evaluation: Evaluating the neural network and fuzzy logic model on the test dataset using appropriate
metrics, such as Mean Absolute Error (MAE) or Root Mean Squared Error (RMSE). Compare the model's performance
against benchmarks or other forecasting methods.

In the recall phase, novel input data is applied to the neural network, and its outputs are computed and evaluated for testing
purposes. The Short-Term Load Forecasting (STLF) model, which relies on Artificial Neural Networks (ANNSs), employs
a layered ANN architecture consisting of an Input layer, Hidden layer, and Output layer. The computation of neural network
weights is accomplished through a learning process that incorporates error propagation within a parallel distributed
processing framework.
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Neural networks and fuzzy systems have gained substantial traction in various engineering and scientific domains. Their
applications span a wide range, from consumer products to decision analysis. Neural networks are fundamentally parallel
distributed processors known for their inductive learning capability from numerical data. They optimize their performance
by adjusting synaptic weights. Feed-forward neural networks, particularly multilayer perceptrons (MLP's), have proven
their ability to accurately approximate any continuous real function within a compact set. Consequently, feed-forward
neural networks are valuable for system modeling and identification. However, they exhibit three primary limitations. First,
there is a lack of a systematic approach for defining the neural network's architecture. Second, training neural networks is
often time-intensive. Lastly, once trained, neural networks lack the ability to provide explicit explanations for their
responses, resulting in non-transparent inference processes. Hence, when attempting to represent a complex system using
a trained neural network, the information contained within the network's parameter values lacks human interpretability,
which is crucial for informed decision-making. Consequently, there is a significant need to develop methods for obtaining
a relevant and interpretable system description from observed data or experiential knowledge.

V. RESULTS AND DISCUSSION
A. Implementation Details

In this chapter, we present a comprehensive exposition of the algorithm we have developed for conducting sentiment
analysis specifically tailored to evaluate the performance buffer. The performance buffer is simulated as a crucial
component within our algorithm, serving the purpose of optimizing its overall effectiveness and efficiency. We provide
both analytical and numerical insights into the inner workings of this algorithm, offering a detailed examination of its
functionality and performance characteristics in the context of sentiment analysis. To evaluate the performance of the
proposed algorithm scheme, the proposed algorithm is simulated in the following configuration:

Pentium Core 15-2430M CPU @ 2.40 GHz

4GB RAM

64-bit Operating System

Matlab Platform

B. Simulation Environment

MATLAB, an acronym for MATrix LABoratory, is a specialized software package designed for efficient and rapid
computation of logical operations and input/output tasks. It encompasses an extensive library of pre-built functions tailored
to a diverse range of calculations, complemented by a multitude of toolkits catering to specific analytical domains such as
statistics, optimization, partial differential equation solving, and data analysis. In the context of this research, we leverage
the capabilities of the MATLAB platform to facilitate the implementation and performance simulation of our algorithm.
We harness measurement toolkits and a selection of built-in functions to generate graphical representations of data.
Furthermore, MATLAB functions are instrumental in deriving the simulation results for the performance assessment of
the bus system under the influence of specific algorithms.

11

Figure 5.1: IEEE 39 single line bus diagram
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Table 5.1 Calculation of Line data for IEEE 39 Bus system

From To Line impedance (p.u.) Half line MVA Voltage
Bus Bus charging of line in KV
Resistance Reactance susceptance
(p.u.)
1 2 0.0035 0.0411 0.6987 100 345
1 39 0.001 0.025 0.75 100 345
2 3 0.0013 0.0151 0.2572 100 345
2 25 0.007 0.0086 0.146 100 345
2 30 0 0.0181 0 100 22
3 4 0.0013 0.0213 0.2214 100 345
3 18 0.0011 0.0133 0.2138 100 345
4 5 0.0008 0.0128 0.1342 100 345
4 14 0.0008 0.0129 0.1382 100 345
5 0.0008 0.0112 0.1476 100 345
6 0.0002 0.0026 0.0434 100 345
6 7 0.0006 0.0092 0.113 100 345
6 11 0.0007 0.0082 0.1389 100 345
7 0.0004 0.0046 0.078 100 345
8 0.0023 0.0363 0.3804 100 345
9 39 0.001 0.025 1.2 100 345
10 11 0.0004 0.0043 0.0729 100 345
10 13 0.0004 0.0043 0.0729 100 345
10 32 0 0.02 0 100 22
12 11 0.0016 0.0435 0 100 345
12 13 0.0016 0.0435 0 100 345
13 14 0.0009 0.0101 0.1723 100 345
14 15 0.0018 0.0217 0.366 100 345
15 16 0.0009 0.0094 0.171 100 345
16 17 0.0007 0.0089 0.1342 100 345
16 19 0.0016 0.0195 0.304 100 345
16 21 0.0008 0.0135 0.2548 100 345
16 24 0.0003 0.0059 0.068 100 345
17 18 0.0007 0.0082 0.1319 100 345
17 27 0.0013 0.0173 0.3216 100 345
19 33 0.0007 0.0142 0 100 22
19 20 0.0007 0.0138 0 100 345
20 34 0.0009 0.018 0 100 22
21 22 0.0008 0.014 0.2565 100 345
22 23 0.0006 0.0096 0.1846 100 345
22 35 0 0.0143 0 100 22
23 24 0.0022 0.035 0.361 100 345
23 36 0.0005 0.0272 0 100 22
25 26 0.0032 0.0323 0.513 100 345
25 37 0.0006 0.0232 0 100 22
26 27 0.0014 0.0147 0.2396 100 345
26 28 0.0043 0.0474 0.7802 100 345
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26 29 0.0057 0.0625 1.029 100 345
28 29 0.0014 0.0151 0.249 100 345
29 38 0.0008 0.0156 0 100 22
31 6 0 0.025 0 100 22

The system comprises a total of 46 transmission lines and 39 buses. The performance indices are summarized in Table 5.2.
Analysis of Table 5.2 reveals that the vulnerability of bus 16 is the most significant, with its fault having a major impact
on the entire system. The elevated PI score associated with this fault highlights its critical importance in system operation,
indicating that it receives substantial attention during operational procedures.

Table 5.2 Bus Voltages in the Pre and Post Contingency State

Bus Pre-contingency voltage Post-contingency Performance

Number (pu) voltage (pu) index (PI)
1 1.0086 0.9823 0.0263
2 0.9971 0.828 0.1691
3 0.9855 0.9851 0.0004
4 0.9826 0.9826 O
5 1 1363 1.1363 o
6 0.9797 0.9796 0.0001
7 0.9884 0.9814 0.007
8 0.9913 0.9788 0.0125
9 1 0086 1.0086 O
10 0.9942 0.8253 0.1689
11 0.9826 0.8126 0.17
12 0.9768 0.807 0.1698
13 1.0115 0.8414 0.1701
14 1.0173 0.8462 0.1711
15 0.9913 0.8188 0.1725
16 0.9855 0.8123 0.1732
17 0.9913 0.8912 0.1001
18 0.9768 0.8956 0.0812
19 1.2272 1.1227 0.1045
20 0.9913 0.9901 0.0012
21 0.9971 0.995 0.0021
22 0.9826 0.9825 0.0001
23 1.0086 1.0063 0.0023
24 0.9797 0.9796 0.0001
25 0.9971 0.9962 0.0009
26 0.9913 0.9910 0.0003
27 0.9942 0.9939 0.0003
28 1.0144 1.0142 0.0002
29 1.0115 1.0113 0.0002
30 0.9768 0.9765 0.0003
31 1.1818 1.1816 0.0002
32 0.9884 0.987 0.0014
33 0.9545 0.9543 0.0002
34 0.9768 0.9724 0.0044
35 1.0115 1.010 0.0015
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36 0.8636 0.8532 0.0104
37 0.9913 0.9902 0.0011
38 0.8181 0.8056 0.0125
39 0.9855 0.9855 0

C. Fore casting load in IEEE 39 bus system

Forecasting the load in a power system, such as the IEEE 39 bus system, using Fourier series is a mathematical technique
that can help you approximate and predict load patterns. Fourier series decomposition can represent a periodic load curve
as a sum of sinusoidal components with different frequencies and amplitudes. Forecasting load in the IEEE 39 bus system
using neural networks and fuzzy logic is a more advanced and data-driven approach compared to Fourier series
decomposition. The analysis results are being described with outcomes evaluated as RMSE error in the predicted and actual

load values.
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The figure 5.6 provides a visual representation of how well a load forecasting model based on the
Adaptive_neuro_interval_fuzzy (ANIF) algorithm performs in predicting actual load values. In an ideal scenario, the
predicted load values should closely follow the actual load values. The red line in the graph represents the actual load
whereas the blue line represents the forecasted loading condition of IEEE 39 bus system

10t Forecasting using Fourier Series
I F==
- - Actual load
‘ - A g ~ — Forscasted load |

0 5 10 15 20 25
Hour

Figure 5.7: Actual load vs predicted load using fourier series method

The figure 5.7 provides a visual representation of how well a load forecasting model based on the Fourier series
mathematical model performs in predicting actual load values. In an ideal scenario, the predicted load values should closely
follow the actual load values. The red line in the graph represents the forecasted load whereas the blue line represents the
actual loading condition of IEEE 39 bus system

Table 5.4: Comparative analysis of error in prediction in IEEE 39 Bus system using two algorithms

Algorithm of Prediction adopted MSE %
Fourier Series 6.437
Adaptive_neuro_interval_fuzzy 4.086
(ANIF) algorithm

The "Fourier Series" algorithm was used to make load predictions. The MSE percentage associated with this algorithm is
6.437%. This means that, on average, the squared difference between the predicted load values and the actual load values
was 6.437% of the total variance in the data. Adaptive_neuro_interval_fuzzy (ANIF) algorithm" was used as an alternative
prediction method. The MSE percentage associated with this algorithm is 4.086%. Compared to the Fourier series model,
the ANIF algorithm achieved a lower MSE percentage, indicating that it provided more accurate load predictions
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Figure 5.8: Comparative analysis of Prediction performance of two algorithms

It has been found that the proposed model with adaptive_neuro_interval fuzzy load forecasting model is better at Handling
Irregularities. In scenarios where the load data is highly irregular or where there are a lot of uncertainties (such as in rapidly
changing urban environments or with the increasing use of renewable energy sources), adaptive neuro_interval_fuzzy
logic performs better. The controller can adapt to changing scenarios without requiring a complete restructuring of the
forecasting model. It allows the incorporation of expert knowledge through user-defined rules, making it more versatile in
handling various scenarios.

VI. CONCLUSION

The research presented in this paper underscores the critical role of accurate load forecasting and contingency analysis in
modern power systems. By leveraging advanced techniques such as fuzzy logic and neural networks, significant
improvements in load prediction accuracy and system resilience are achieved. The integration of these methodologies into
the IEEE 39 bus system provides valuable insights into their practical applicability and effectiveness. The results highlight
the importance of adaptive approaches in handling irregularities and uncertainties, ensuring robust performance even in
dynamically changing environments. Moving forward, the findings of this study pave the way for further advancements in
load forecasting and contingency analysis, contributing to the optimization and sustainability of power system operations..
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